Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
  • Comparisons Between Air and...
    Chen, Chieh-Hung; Wang, Chung-Ho; Chen, Deng-Lung; Sun, Yang-Yi; Liu, Jann-Yenq; Yeh, Ta-Kang; Yen, Horng-Yuan; Chang, Shu-Hao

    Groundwater and Subsurface Environments
    Book Chapter

    Air and sea surface temperature increases due to global warming have been widely observed around the world at various rates. This temperature rising has also been documented in many subsurface records recently. The air-ground temperature coupling system introduces an important factor in disturbing the original thermal balance and provides a new dimension to comprehend the effects of global warming on the Earth system. Ten meteorological stations of Central Weather Bureau in Taiwan that have been routinely measured for air (1.5 m above the ground) and subsurface (at depths of 0, 5, 10, 20, 30, 50, 100, 200, 300 and 500 cm below the ground) temperatures are used for in-depth comparison in this study. These stations have a mean observation period of 82 years (as of 2008) to provide good coverage for a preliminary examination of air-ground temperature coupling relationship in a century scale. Results show that patterns and variations of air and subsurface temperature are quite different among stations in Taiwan. In general, air and subsurface temperatures exhibit consistent linear trends after 1980 due to accelerating global warming, but display complex and inconsistent tendencies before 1980. When surface air temperature is subtracted from subsurface one, the differences in the eastern Taiwan are generally larger than those in the western Taiwan. This observation is possibly caused by (1) heat absorption of dense high-rise buildings, and/or (2) cut off heat propagating into deep depths in the urban area of western Taiwan. By comparing temperature peaks at various layers from shallow to deep, rates of thermal propagation can be estimated. The distinct time shifts among stations suggest that thermal propagations have to be taken into account when constructing historical temperature records.