Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • Effect of CYP3A5 polymorphi...
    Dai, Yang; Hebert, Mary F; Isoherranen, Nina; Davis, Connie L; Marsh, Christopher; Shen, Danny D; Thummel, Kenneth E

    Drug metabolism and disposition, 05/2006, Volume: 34, Issue: 5
    Journal Article

    Previous investigations of solid organ transplant patients treated with tacrolimus showed that individuals carrying a CYP3A5*1 allele have lower dose-adjusted trough blood concentrations compared with homozygous CYP3A5*3 individuals. The objective of this investigation was to quantify the contribution of CYP3A5 to the hepatic and renal metabolic clearance of tacrolimus. Four primary tacrolimus metabolites, 13-O-desmethyl tacrolimus (13-DMT) (major), 15-O-desmethyl tacrolimus, 31-O-desmethyl tacrolimus (31-DMT), and 12-hydroxy tacrolimus (12-HT), were generated by human liver microsomes and heterologously expressed CYP3A4 and CYP3A5. The unbound tacrolimus concentration was low (4-15%) under all incubation conditions. For CYP3A4 and CYP3A5, V(max) was 8.0 and 17.0 nmol/min/nmol enzyme and K(m,u) was 0.21 and 0.21 muM, respectively. The intrinsic clearance of CYP3A5 was twice that of CYP3A4. The formation rates of 13-DMT, 31-DMT, and 12-HT were >or=1.7-fold higher, on average, in human liver microsomes with a CYP3A5*1/*3 genotype compared with those with a homozygous CYP3A5*3/*3 genotype. Tacrolimus disappearance clearances were 15.9 +/- 9.8 ml/min/mg protein and 6.1 +/- 3.6 ml/min/mg protein, respectively, for the two genotypes. In vitro to in vivo scaling using both liver microsomes and recombinant enzymes yielded higher predicted in vivo tacrolimus clearances for patients with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. In addition, formation of 13-DMT was 13.5-fold higher in human kidney microsomes with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. These data suggest that CYP3A5 contributes significantly to the metabolic clearance of tacrolimus in the liver and kidney.