Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • Layered Orthorhombic Nb2O5@...
    Zhang, Chuanfang (John); Kim, Seon Joon; Ghidiu, Michael; Zhao, Meng-Qiang; Barsoum, Michel W.; Nicolosi, Valeria; Gogotsi, Yury

    Advanced functional materials, June 20, 2016, Volume: 26, Issue: 23
    Journal Article

    Engineering electrode nanostructures is critical in developing high‐capacity, fast rate‐response, and safe Li‐ion batteries. This study demonstrates the synthesis of orthorhombic Nb2O5@Nb4C3Tx (or @Nb2CTx) hierarchical composites via a one‐step oxidation —in flowing CO2 at 850 °C —of 2D Nb4C3Tx (or Nb2CTx) MXene. The composites possess a layered architecture with orthorhombic Nb2O5 nanoparticles decorated uniformly on the surface of the MXene flakes and interconnected by disordered carbon. The composites have a capacity of 208 mAh g−1 at a rate of 50 mA g−1 (0.25 C) in 1–3 V versus Li+/Li, and retain 94% of the specific capacity with 100% Coulombic efficiency after 400 cycles. The good electrochemical performances could be attributed to three synergistic effects: (1) the high conductivity of the interior, unoxidized Nb4C3Tx layers, (2) the fast rate response and high capacity of the external Nb2O5 nanoparticles, and (3) the electron “bridge” effects of the disordered carbon. This oxidation method was successfully extended to Ti3C2Tx and Nb2CTx MXenes to prepare corresponding composites with similar hierarchical structures. Since this is an early report on producing this structure, there is much room to push the boundaries further and achieve better electrochemical performance. The oxidation of Nb4C3Tx MXene in CO2 results in a hierarchical T‐Nb2O5@Nb4C3Tx layered composite, that combines the high capacity of the external orthorhombic T‐Nb2O5, coupled with the high electrical conductivity of the interior unoxidized Nb4C3Tx and the electron bridge effect of the disordered carbon. This composite exhibits high capacity at high rate when used as Li‐ion battery anode.