Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • From the Shelf to the Parti...
    Ruschel Campedelli, Roberta; Keller, Mateus H; Pinheiro, Gabriela; Campos, Carlos E. M; Zaramello, Laize; Silveira de Souza, Bruno

    Journal of organic chemistry, 08/2019, Volume: 84, Issue: 16
    Journal Article

    Preparation of chemically tunable magnetic nanoparticles (MNPs) is of great interest in many technological fields. Although numerous methods have been developed to prepare MNPs coated with functional organic moieties, most of them are complex, multistep, and involve the preparation of a specific ligand to be inserted on the particle surface. Herein, we describe the preparation of MNPs covered with reactive polymer poly­(4-nitrophenyl methacrylate). The composite was prepared by the dispersion polymerization of 4-nitrophenyl methacrylate in the presence of magnetite nanoparticles stabilized by oleic acid. The novel material can be easily modified with amines to give chemically stable amide bonds without installation of pH-dependent features in the link. The extent of particle modification is readily monitored by the release of 4-nitrophenol from the polymer using UV–vis spectrophotometry. Good agreement between the degree of functionalization assessed by colorimetry and elemental analysis was obtained, and functionalization up to 3 mmol g–1 is easily attained. To illustrate the applicability of the method for catalyst development, we prepared imidazole-covered MNPs that accelerate the hydrolysis of a model organophosphate, with rate constants approximately 105-fold higher than the spontaneous hydrolysis. The catalyst can be recovered by a magnet and recycled without appreciable loss of catalytic activity.