Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • What Determines the Strengt...
    Borer, E. T.; Seabloom, E. W.; Shurin, J. B.; Anderson, K. E.; Blanchette, C. A.; Broitman, B.; Cooper, S. D.; Halpern, B. S.

    Ecology (Durham), February 2005, Volume: 86, Issue: 2
    Journal Article

    Trophic cascades have been documented in a diversity of ecological systems and can be important in determining biomass distribution within a community. To date, the literature on trophic cascades has focused on whether and in which systems cascades occur. Many biological (e.g., productivity : biomass ratios) and methodological (e.g., experiment size or duration) factors vary with the ecosystem in which data were collected, but ecosystem type, per se, does not provide mechanistic insights into factors controlling cascade strength. Here, we tested various hypotheses about why trophic cascades occur and what determines their magnitude using data from 114 studies that measured the indirect trophic effects of predators on plant community biomass in seven aquatic and terrestrial ecosystems. Using meta-analysis, we examined the relationship between the indirect effect of predator manipulation on plants and 18 biological and methodological factors quantified from these studies. We found, in contrast to predictions, that high system productivity and low species diversity do not consistently generate larger trophic cascades. A combination of herbivore and predator metabolic factors and predator taxonomy (vertebrate vs. invertebrate) explained 31% of the variation in cascade strength among all 114 studies. Within systems, 18% of the variation in cascade strength was explained with similar predator and herbivore characteristics. Within and across all systems, the strongest cascades occurred in association with invertebrate herbivores and endothermic vertebrate predators. These associations may result from a combination of true biological differences among species with different physiological requirements and bias among organisms studied in different systems. Thus, although cascade strength can be described by biological characteristics of predators and herbivores, future research on indirect trophic effects must further examine biological and methodological differences among studies and systems.