Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Metagenomic insights into t...
    Moon, Christina D.; Young, Wayne; Maclean, Paul H.; Cookson, Adrian L.; Bermingham, Emma N.

    MicrobiologyOpen (Weinheim), October 2018, Volume: 7, Issue: 5
    Journal Article

    Interests in the impact of the gastrointestinal microbiota on health and wellbeing have extended from humans to that of companion animals. While relatively fewer studies to date have examined canine and feline gut microbiomes, analysis of the metagenomic DNA from fecal communities using next‐generation sequencing technologies have provided insights into the microbes that are present, their function, and potential to contribute to overall host nutrition and health. As carnivores, healthy dogs and cats possess fecal microbiomes that reflect the generally higher concentrations of protein and fat in their diets, relative to omnivores and herbivores. The phyla Firmicutes and Bacteroidetes are highly abundant, and Fusobacteria, Actinobacteria, and Proteobacteria also feature prominently. Proteobacteria is the most diverse bacterial phylum and commonly features in the fecal microbiota of healthy dogs and cats, although its reputation is often sullied as its members include a number of well‐known opportunistic pathogens, such as Escherichia coli, Salmonella, and Campylobacter, which may impact the health of the host and its owner. Furthermore, in other host species, high abundances of Proteobacteria have been associated with dysbiosis in hosts with metabolic or inflammatory disorders. In this review, we seek to gain further insight into the prevalence and roles of the Proteobacteria within the gastrointestinal microbiomes of healthy dogs and cats. We draw upon the growing number of metagenomic DNA sequence‐based studies which now allow us take a culture‐independent approach to examine the functions that this more minor, yet important, group contribute to normal microbiome function. The fecal microbiomes of healthy dogs and cats often include Proteobacteria at varying abundances. This phylum can have a sullied reputation as it contains a number of well‐known pathogenic members. We explored the functions of the Proteobacteria in fecal shotgun metagenome datasets from healthy dogs and cats. The Proteobacteria appeared to be enriched for functions that are consistent with a role in helping to maintain the anaerobic environment of the gut for normal microbiome function.