Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • Cr(VI) removal performance ...
    Chang, Junjun; Deng, Shengjiong; Liang, Yun; Chen, Jinquan

    Environmental science and pollution research international, 09/2019, Volume: 26, Issue: 27
    Journal Article

    Microbial methods are promising and environmentally friendly methods for remediating heavy metal contamination. In this study, a Cr(VI)-resistant bacterial strain, DC-B3, which was identified as Pseudomonas sp. by 16S rDNA gene sequencing, was isolated from heavy metal-contaminated mine soil, and its performance in Cr(VI) removal from wastewater in terms of Cr(VI) reduction and total Cr adsorption was assessed. This strain exhibited a high capability to reduce Cr(VI) to less toxic Cr(III) without the addition of an external electron donor at low pH (2.0). The Cr(VI) reduction capacity and rate both increased linearly with increasing Cr(VI) concentration, with a reduction capacity of 32.0 mg Cr(VI)·g −1 achieved at an initial concentration of 135.0 mg L −1 over 75 h. In addition, 41.0% of the total Cr was removed from the solution by biosorption, and equilibrium was reached within approximately 5 h. The total Cr sorption process was well described by the pseudo-second-order kinetic and Langmuir isotherm models. Desorption assays indicated that NaOH was the most efficient agent for total Cr desorption, and Cr(VI) and generated Cr(III) were both loaded on the DC-B3 biomass. The bacterial cells after Cr treatment were characterized by scanning electron microscopy-energy dispersive X-ray spectrometer and Fourier transform infrared spectroscopy analyses. Strain DC-B3 showed high potential for possible application in the remediation of Cr(VI) contamination in mine areas.