Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Serum Metabolomic Profiling...
    Huang, Jiaqi; Weinstein, Stephanie J; Moore, Steven C; Derkach, Andriy; Hua, Xing; Liao, Linda M; Gu, Fangyi; Mondul, Alison M; Sampson, Joshua N; Albanes, Demetrius

    American journal of epidemiology, 08/2018, Volume: 187, Issue: 8
    Journal Article

    Abstract Tobacco use, hypertension, hyperglycemia, overweight, and inactivity are leading causes of overall and cardiovascular disease (CVD) mortality worldwide, yet the relevant metabolic alterations responsible are largely unknown. We conducted a serum metabolomic analysis of 620 men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (1985–2013). During 28 years of follow-up, there were 435 deaths (197 CVD and 107 cancer). The analysis included 406 known metabolites measured with ultra-high-performance liquid chromatography/mass spectrometry–gas chromatography/mass spectrometry. We used Cox regression to estimate mortality hazard ratios for a 1-standard-deviation difference in metabolite signals. The strongest associations with overall mortality were N-acetylvaline (hazard ratio (HR) = 1.28; P < 4.1 × 10−5, below Bonferroni statistical threshold) and dimethylglycine, 7-methylguanine, C-glycosyltryptophan, taurocholate, and N-acetyltryptophan (1.23 ≤ HR ≤ 1.32; 5 × 10−5 ≤ P ≤ 1 × 10−4). C-Glycosyltryptophan, 7-methylguanine, and 4-androsten-3β,17β-diol disulfate were statistically significantly associated with CVD mortality (1.49 ≤ HR ≤ 1.62, P < 4.1 × 10−5). No metabolite was associated with cancer mortality, at a false discovery rate of <0.1. Individuals with a 1-standard-deviation higher metabolite risk score had increased all-cause and CVD mortality in the test set (HR = 1.4, P = 0.05; HR = 1.8, P = 0.003, respectively). The several serum metabolites and their composite risk score independently associated with all-cause and CVD mortality may provide potential leads regarding the molecular basis of mortality.