Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed
  • Apoptosis-inducing antitumo...
    Kim, Won; Yoon, Jung-Hwan; Jeong, Jae-Min; Cheon, Gi-Jeong; Lee, Tae-Sup; Yang, Jong-In; Park, Su-Cheol; Lee, Hyo-Suk

    Molecular cancer therapeutics, 09/2007, Volume: 6, Issue: 9
    Journal Article

    Hypoxia stimulates hepatocellular carcinoma (HCC) cell growth via hexokinase (HK) II induction, and alternatively, HK II inhibition induces apoptosis by activating mitochondrial signaling. This study was to investigate whether the induction of HK II by hypoxia is associated with enhanced mitochondrial stability and to confirm the apoptosis-inducing efficacy of HK II inhibitor in an in vivo model of HCC. Mitochondrial stability was examined by treating isolated mitochondria with deoxycholate, a permeability-enhancing agent. Alteration of permeability transition pore complex composition was analyzed by immunoprecipitation and immunoblotting. An in vivo model of HCC was established in C3H mice i.d. implanted with MH134 cells. The antitumor efficacy of i.p. given 3-bromopyruvate (3-BrPA), a HK II inhibitor, was evaluated by measuring tumor volumes and quantifying apoptosis using terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling staining and 99m Tc-hydrazinonicotinamide-Annexin V scans. Hypoxia enhanced mitochondrial stability, and this was inhibited by 3-BrPA treatment. In particular, HK II levels in permeability transition pore complex immunoprecipitates were reduced after 3-BrPA treatment. In mice treated with 3-BrPA, mean tumor volumes and tumor volume growth were found to be significantly reduced. Moreover, percentages of terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling–positive cells were significantly increased in 3-BrPA–treated mice, and this apoptosis-inducing efficacy was reflected in vivo by 99m Tc-hydrazinonicotinamide-Annexin V imaging. Our results show that hypoxia enhances mitochondrial stability via HK II induction and that HK II inhibitor treatment exhibits an in vivo antitumor effect by inducing apoptosis. Therefore, HK II inhibitors may be therapeutically useful for the treatment of advanced infiltrative hypovascular HCCs, which are growing in a hypoxic environment. Mol Cancer Ther 2007;6(9):2554–62