Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • Basic helix-loop-helix tran...
    Ito, T; Udaka, N; Yazawa, T; Okudela, K; Hayashi, H; Sudo, T; Guillemot, F; Kageyama, R; Kitamura, H

    Development (Cambridge), 09/2000, Volume: 127, Issue: 18
    Journal Article

    To clarify the mechanisms that regulate neuroendocrine differentiation of fetal lung epithelia, we have studied the expression of the mammalian homologs of achaete-scute complex (Mash1) (Ascl1 - Mouse Genome Informatics); hairy and enhancer of split1 (Hes1); and the expression of Notch/Notch-ligand system in the fetal and adult mouse lungs, and in the lungs of Mash1- or Hes1-deficient mice. Immunohistochemical studies revealed that Mash1-positive cells seemed to belong to pulmonary neuroendocrine cells (PNEC) and their precursors. In mice deficient for Mash1, no PNEC were detected. Hes1-positive cells belong to non-neuroendocrine cells. In the mice deficient in Hes1, in which Mash1 mRNA was upregulated, PNEC appeared precociously, and the number of PNEC was markedly increased. NeuroD (Neurod1 - Mouse Genome Informatics) expression in the lung was detected in the adult, and was enhanced in the fetal lungs of Hes1-null mice. Expression of Notch1, Notch2, Notch3 and Notch4 mRNAs in the mouse lung increased with age, and Notch1 mRNA was expressed in a Hes1-dependent manner. Notch1, Notch2 and Notch3 were immunohistochemically detected in non-neuroendocrine cells. Moreover, analyses of the lungs from the gene-targeted mice suggested that expression of Delta-like 1 (Dll1 - Mouse Genome Informatics) mRNA depends on Mash1. Thus, the neuroendocrine differentiation depends on basic helix-loop-helix factors, and Notch/Notch-ligand pathways may be involved in determining the cell differentiation fate in fetal airway epithelium.