Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • Enhancing Sparsity and Reso...
    Yang, Zai; Xie, Lihua

    IEEE transactions on signal processing, 02/2016, Volume: 64, Issue: 4
    Journal Article

    The mathematical theory of super-resolution developed recently by Candès and Fernandes-Granda states that a continuous, sparse frequency spectrum can be recovered with infinite precision via a (convex) atomic norm technique given a set of uniform time-space samples. This theory was then extended to the cases of partial/compressive samples and/or multiple measurement vectors via atomic norm minimization (ANM), known as off-grid/continuous compressed sensing (CCS). However, a major problem of existing atomic norm methods is that the frequencies can be recovered only if they are sufficiently separated, prohibiting commonly known high resolution. In this paper, a novel (nonconvex) sparse metric is proposed that promotes sparsity to a greater extent than the atomic norm. Using this metric an optimization problem is formulated and a locally convergent iterative algorithm is implemented. The algorithm iteratively carries out ANM with a sound reweighting strategy which enhances sparsity and resolution, and is termed as reweighted atomic-norm minimization (RAM). Extensive numerical simulations are carried out to demonstrate the advantageous performance of RAM with application to direction of arrival (DOA) estimation.