Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed Open access
  • Micius quantum experiments ...
    Lu, Chao-Yang; Cao, Yuan; Peng, Cheng-Zhi; Pan, Jian-Wei

    Reviews of modern physics, 07/2022, Volume: 94, Issue: 3
    Journal Article

    Quantum theory has been successfully validated in numerous laboratory experiments. But would such a theory, which effectively describes the behavior of microscopic physical systems and its predicted phenomena such as quantum entanglement, still be applicable on large length scales? From a practical perspective, how can quantum key distribution (where the security of establishing secret keys between distant parties is ensured by the laws of quantum mechanics) be made technologically useful on a global scale? Owing to photon loss in optical fibers and terrestrial free space, the achievable distance using direct transmission of single photons has been limited to a few hundred kilometers. A promising route to testing quantum physics over long distances and in the relativistic regimes, and thus realizing flexible global-scale quantum networks, is via the use of satellites and space-based technologies, where a significant advantage is that the photon loss and turbulence predominantly occurs in the lower ∼ 10     km of the atmosphere, and most of the photons' transmission path in space is virtually in vacuum, with almost zero absorption and decoherence. Progress in free-space quantum experiments, with a focus on the fast-developing Micius satellite–based quantum communications, is reviewed. The perspective of space-ground integrated quantum networks and fundamental quantum optics experiments in space conceivable with satellites are discussed.