Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Disorder-Enhanced and Disor...
    Chávez, Nahum C; Mattiotti, Francesco; Méndez-Bermúdez, J A; Borgonovi, Fausto; Celardo, G Luca

    Physical review letters, 2021-Apr-16, Volume: 126, Issue: 15
    Journal Article

    Overcoming the detrimental effect of disorder at the nanoscale is very hard since disorder induces localization and an exponential suppression of transport efficiency. Here we unveil novel and robust quantum transport regimes achievable in nanosystems by exploiting long-range hopping. We demonstrate that in a 1D disordered nanostructure in the presence of long-range hopping, transport efficiency, after decreasing exponentially with disorder at first, is then enhanced by disorder disorder-enhanced transport (DET) regime until, counterintuitively, it reaches a disorder-independent transport (DIT) regime, persisting over several orders of disorder magnitude in realistic systems. To enlighten the relevance of our results, we demonstrate that an ensemble of emitters in a cavity can be described by an effective long-range Hamiltonian. The specific case of a disordered molecular wire placed in an optical cavity is discussed, showing that the DIT and DET regimes can be reached with state-of-the-art experimental setups.