Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Neutron Valence Structure f...
    Segarra, E P; Schmidt, A; Kutz, T; Higinbotham, D W; Piasetzky, E; Strikman, M; Weinstein, L B; Hen, O

    Physical review letters, 03/2020, Volume: 124, Issue: 9
    Journal Article

    Mechanisms of spin-flavor SU(6) symmetry breaking in quantum chromodynamics (QCD) are studied via an extraction of the free neutron structure function from a global analysis of deep inelastic scattering (DIS) data on the proton and on nuclei from A=2 (deuterium) to 208 (lead). Modification of the structure function of nucleons bound in atomic nuclei (known as the EMC effect) are consistently accounted for within the framework of a universal modification of nucleons in short-range correlated (SRC) pairs. Our extracted neutron-to-proton structure function ratio F_{2}^{n}/F_{2}^{p} becomes constant for x_{B}≥0.6, equaling 0.47±0.04 as x_{B}→1, in agreement with theoretical predictions of perturbative QCD and the Dyson-Schwinger equation, and in disagreement with predictions of the scalar diquark dominance model. We also predict F_{2}^{^{3}He}/F_{2}^{^{3}H}, recently measured, as yet unpublished, by the MARATHON Collaboration, the nuclear correction function that is needed to extract F_{2}^{n}/F_{2}^{p} from F_{2}^{^{3}He}/F_{2}^{^{3}H}, and the theoretical uncertainty associated with this extraction.