Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • The late Precambrian greeni...
    Kennedy, Martin J; Knauth, L. Paul

    Nature (London), 08/2009, Volume: 460, Issue: 7256
    Journal Article

    Many aspects of the carbon cycle can be assessed from temporal changes in the 13C/12C ratio of oceanic bicarbonate. 13C/12C can temporarily rise when large amounts of 13C-depleted photosynthetic organic matter are buried at enhanced rates, and can decrease if phytomass is rapidly oxidized or if low 13C is rapidly released from methane clathrates. Assuming that variations of the marine 13C/12C ratio are directly recorded in carbonate rocks, thousands of carbon isotope analyses of late Precambrian examples have been published to correlate these otherwise undatable strata and to document perturbations to the carbon cycle just before the great expansion of metazoan life. Low 13C/12C in some Neoproterozoic carbonates is considered evidence of carbon cycle perturbations unique to the Precambrian. These include complete oxidation of all organic matter in the ocean and complete productivity collapse such that low-13C/12C hydrothermal CO2 becomes the main input of carbon. Here we compile all published oxygen and carbon isotope data for Neoproterozoic marine carbonates, and consider them in terms of processes known to alter the isotopic composition during transformation of the initial precipitate into limestone/dolostone. We show that the combined oxygen and carbon isotope systematics are identical to those of well-understood Phanerozoic examples that lithified in coastal pore fluids, receiving a large groundwater influx of photosynthetic carbon from terrestrial phytomass. Rather than being perturbations to the carbon cycle, widely reported decreases in 13C/12C in Neoproterozoic carbonates are more easily interpreted in the same way as is done for Phanerozoic examples. This influx of terrestrial carbon is not apparent in carbonates older than ∼850 Myr, so we infer an explosion of photosynthesizing communities on late Precambrian land surfaces. As a result, biotically enhanced weathering generated carbon-bearing soils on a large scale and their detrital sedimentation sequestered carbon. This facilitated a rise in O2 necessary for the expansion of multicellular life.