Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Algorithm for Sea Surface W...
    Xiao-Ming Li; Lehner, Susanne

    IEEE transactions on geoscience and remote sensing, 05/2014, Volume: 52, Issue: 5
    Journal Article

    A geophysical model function (GMF), which is denoted by XMOD2, is developed to retrieve sea surface wind field from X-band TerraSAR-X/TanDEM-X (TS-X/TD-X) data. In contrast to the previously developed XMOD1, XMOD2 consists of a nonlinear GMF, and thus, it depicts the difference between upwind and downwind of the sea surface backscatter in X-band synthetic aperture radar (SAR) imagery. By exploiting 371 collocations with in situ buoy measurements that are used as the tuning data set together with analysis wind model results, the retrieved TS-X/TD-X sea surface wind speed using XMOD2 shows a close agreement with buoy measurements with a bias of -0.32 m/s, a root-mean-square error (RMSE) of 1.44 m/s, and a scatter index (SI) of 16.0%. Further validation using an independent data set of 52 cases shows a bias of -0.17 m/s, an RMSE of 1.48 m/s, and an SI of 17.0% comparing with buoy measurements. To apply XMOD2 to TS-X/TD-X data acquired at HH polarization, we validate three X-band SAR polarization ratio models that were tuned using TS-X dual-polarization data by comparing the retrieved sea surface wind speed with buoy measurements.