Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • A low-cost and high perform...
    Gauthier, Magali; Mazouzi, Driss; Reyter, David; Lestriez, Bernard; Moreau, Philippe; Guyomard, Dominique; Roue, Lionel

    Energy & environmental science, 2013, Volume: 6, Issue: 7
    Journal Article

    A Si-based anode with improved performance can be achieved using high-energy ball-milling as a cheap and easy process to produce Si powders prepared from a coarse-grained material. Ball-milled powders present all the advantages of nanometric Si powders, but not the drawbacks. Milled powders are nanostructured with micrometric agglomerates (median size similar to 10 mu m), made of submicrometric cold-welded particles with a crystallite size of similar to 10 nm. The micrometric particle size provides handling and non-toxicity advantages compared to nanometric powders, as well as four times higher tap density. The nanostructuration is assumed to provide a shortened Li super(+) diffusion path, a fast Li super(+) diffusion path along grain boundaries and a smoother phase transition upon cycling. Compared to non-milled 1-5 mu m powders, the improved performance of nanostructured milled Si powders is linked to a strong lowering of particle disconnection at each charge, while the irreversibility due to SEI formation remains unchanged. An electrode prepared in acidic conditions with the CMC binder achieves 600 cycles at more than 1170 mA h per gram of the milled Si-based electrode, in an electrolyte containing FEC/VC SEI-forming additives, with a coulombic efficiency above 99%, compared to less than 100 cycles at the same capacity for an electrode containing nanometric Si powder.