Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Hepatitis C Virus Core Sele...
    Eisen-Vandervelde, Audrey L; Waggoner, Stephen N; Yao, Zhi Qiang; Cale, Evan M; Hahn, Chang S; Hahn, Young S

    The Journal of biological chemistry, 10/2004, Volume: 279, Issue: 42
    Journal Article

    Hepatitis C virus (HCV) is remarkably efficient at establishing persistent infection, suggesting that it has evolved one or more strategies aimed at evading the host immune response. T cell responses, including interferon-γ production, are severely suppressed in chronic HCV patients. The HCV core protein has been previously shown to circulate in the bloodstream of HCV-infected patients and inhibit host immunity through an interaction with gC1qR. To determine the role of the HCV core-gC1qR interaction in modulation of inflammatory cytokine production, we examined interleukin (IL)-12 production, which is critical for the induction of interferon-γ synthesis, in lipopolysaccharide-stimulated human monocyte/macrophages. We found that core protein binds the gC1qR displayed on the cell surface of monocyte/macrophages and inhibits the production of IL-12p70 upon lipopolysaccharide stimulation. This inhibition was found to be selective in that HCV core failed to affect the production of IL-6, IL-8, IL-1β, and tumor necrosis factor α. In addition, suppression of IL-12 production by core protein occurred at the transcriptional level by inhibition of IL-12p40 mRNA synthesis. Importantly, core-induced inhibition of IL-12p40 mRNA synthesis resulted from impaired activation of AP-1 rather than enhanced IL-10 production. These results suggest that the HCV core-gC1qR interaction may play a pivotal role in establishing persistent infection by dampening T H 1 responses.