Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • A “Pre‐Division Metal Clust...
    Zhao, Yun‐Xiu; Wen, Jing‐Hong; Li, Ping; Zhang, Peng‐Fang; Wang, Su‐Na; Li, Da‐Cheng; Dou, Jian‐Min; Li, Yun‐Wu; Ma, Hui‐Yan; Xu, Liqiang

    Angewandte Chemie International Edition, March 6, 2023, Volume: 62, Issue: 11
    Journal Article

    To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal‐air batteries, catalysts with dual‐active centers have stood out. Here, a “pre‐division metal clusters” strategy is firstly conceived to fabricate a N,S‐dual doped honeycomb‐like carbon matrix inlaid with CoN4 sites and wrapped Co2P nanoclusters as dual‐active centers (Co2P/CoN4@NSC‐500). A crystalline {CoII2} coordination cluster divided by periphery second organic layers is well‐designed to realize delocalized dispersion before calcination. The optimal Co2P/CoN4@NSC‐500 executes excellent 4e− ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn‐air battery (ZAB) assembled by Co2P/CoN4@NSC‐500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm−2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices. A “pre‐division metal clusters” strategy is first conceived to fabricate dual‐active center catalysts (Co2P/CoN4@NSC‐500) with dispersed CoN4 and Co2P sites. The optimal catalyst executes superior ORR activity and was applied in ultralong Zn‐air batteries surpassing the benchmark 20 % Pt/C. Theoretical calculations demonstrate that the dual‐active sites synergistically quicken the formation of the *OOH intermediate, greatly boosting the performance.