Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • Biomimetic Nanosilica–Colla...
    Wang, Shao‐Jie; Jiang, Dong; Zhang, Zheng‐Zheng; Chen, You‐Rong; Yang, Zheng‐Dong; Zhang, Ji‐Ying; Shi, Jinjun; Wang, Xing; Yu, Jia‐Kuo

    Advanced materials (Weinheim), 12/2019, Volume: 31, Issue: 49
    Journal Article

    Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects. A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.