Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Transferrin Functionalized ...
    Lopalco, Antonio; Cutrignelli, Annalisa; Denora, Nunzio; Lopedota, Angela; Franco, Massimo; Laquintana, Valentino

    Nanomaterials (Basel, Switzerland), 03/2018, Volume: 8, Issue: 3
    Journal Article

    The transport of dopamine across the blood brain barrier represents a challenge for the management of Parkinson's disease. The employment of central nervous system targeted ligands functionalized nanocarriers could be a valid tactic to overcome this obstacle and avoid undesirable side effects. In this work, transferrin functionalized dopamine-loaded liposomes were made by a modified dehydration-rehydration technique from hydrogenated soy phosphatidylcoline, cholesterol and 1,2-stearoyl- -glycero-3-phosphoethanolamine- -carboxy(poly(ethylene glycol)-2000). The physical features of the prepared liposomes were established with successive determination of their endothelial permeability across an model of the blood-brain barrier, constituted by human cerebral microvascular endothelial cells (hCMEC/D3). Functionalized dopamine-loaded liposomes with encapsulation efficiency more than 35% were made with sizes in a range around 180 nm, polydispersity indices of 0.2, and positive zeta potential values (+7.5 mV). Their stability and drug release kinetics were also evaluated. The apparent permeability (P ) values of encapsulated dopamine in functionalized and unfunctionalized liposomes showed that transferrin functionalized nanocarriers could represent appealing non-toxic candidates for brain delivery, thus improving benefits and decreasing complications to patients subjected to L-dopa chronical treatment.