Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Brain-derived neurotrophic ...
    Sharma, Guru Prasad; Frei, Anne C; Narayanan, Jayashree; Gasperetti, Tracy; Veley, Dana; Amjad, Asma; Albano, Katherine; Fish, Brian L; Himburg, Heather A

    PloS one, 10/2021, Volume: 16, Issue: 10
    Journal Article

    Brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which has been extensively studied for its roles in neural development, long-term memory, brain injury, and neurodegenerative diseases. BDNF signaling through tropomyosin receptor kinase B (TrkB) stimulates neuronal cell survival. For this reason, small molecule TrkB agonists are under pre-clinical develoment for the treatment of a range of neurodegenerative diseases and injuries. Our laboratory recently reported BDNF is secreted by pro-regenerative endothelial progenitor cells (EPCs) which support hematopoietic reconstitution following total body irradiation (TBI). Here we report BDNF-TrkB signaling plays a novel regenerative role in bone marrow and thymic regeneration following radiation injury. Exogenous administration of BDNF or TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following myelosuppressive radiation injury promoted faster recovery of mature blood cells and hematopoietic stem cells capable of multi-lineage reconstitution. BDNF promotes hematopoietic regeneration via activation of PDGFRα+ bone marrow mesenchymal stem cells (MSCs) which increase secretion of hematopoietic cytokines interleukin 6 (IL-6) and leukemia inhibitory factor (LIF) in response to TrkB activation. These data suggest pharmacologic activation of the BDNF pathway with either BDNF or 7,8-DHF may be beneficial for treatment of radiation or chemotherapy induced myelosuppression.