Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Endoplasmic Reticulum Amino...
    Blanchard, Nicolas; Kanaseki, Takayuki; Escobar, Hernando; Delebecque, Frederic; Nagarajan, Niranjana A; Reyes-Vargas, Eduardo; Crockett, David K; Raulet, David H; Delgado, Julio C; Shastri, Nilabh

    The Journal of immunology (1950), 03/2010, Volume: 184, Issue: 6
    Journal Article

    The MHC class I (MHC-I) molecules ferry a cargo of peptides to the cell surface as potential ligands for CD8(+) cytotoxic T cells. For nearly 20 years, the cargo has been described as a collection of short 8-9 mer peptides, whose length and sequences were believed to be primarily determined by the peptide-binding groove of MHC-I molecules. Yet the mechanisms for producing peptides of such optimal length and composition have remained unclear. In this study, using mass spectrometry, we determined the amino acid sequences of a large number of naturally processed peptides in mice lacking the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). We find that ERAAP-deficiency changed the oeuvre and caused a marked increase in the length of peptides normally presented by MHC-I. Furthermore, we observed similar changes in the length of viral peptides recognized by CD8(+) T cells in mouse CMV-infected ERAAP-deficient mice. In these mice, a distinct CD8(+) T cell population was elicited with specificity for an N-terminally extended epitope. Thus, the characteristic length, as well as the composition of MHC-I peptide cargo, is determined not only by the MHC-I peptide-binding groove but also by ERAAP proteolysis in the endoplasmic reticulum.