Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • The Yellowstone magmatic sy...
    Huang, Hsin-Hua; Lin, Fan-Chi; Schmandt, Brandon; Farrell, Jamie; Smith, Robert B.; Tsai, Victor C.

    Science (American Association for the Advancement of Science), 05/2015, Volume: 348, Issue: 6236
    Journal Article

    The Yellowstone supervolcano is one of the largest active continental silicic volcanic fields in the world. An understanding of its properties is key to enhancing our knowledge of volcanic mechanisms and corresponding risk. Using a joint local and teleseismic earthquake P-wave seismic inversion, we revealed a basaltic lower-crustal magma body that provides a magmatic link between the Yellowstone mantle plume and the previously imaged upper-crustal magma reservoir. This lower-crustal magma body has a volume of 46,000 cubic kilometers, ∼4.5 times that of the upper-crustal magma reservoir, and contains a melt fraction of ∼2%. These estimates are critical to understanding the evolution of bimodal basaltic-rhyolitic volcanism, explaining the magnitude of CO2 discharge, and constraining dynamic models of the magmatic system for volcanic hazard assessment.