Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Peptide biosensors for anti...
    Guida, Filomena; Battisti, Anna; Gladich, Ivan; Buzzo, Mauro; Marangon, Elena; Giodini, Luciana; Toffoli, Giuseppe; Laio, Alessandro; Berti, Federico

    Biosensors & bioelectronics, 02/2018, Volume: 100
    Journal Article

    One of the main targets in current clinical oncology is the development of a cheap device capable of monitoring in real-time the concentration of a drug in the blood of a patient. This would allow fine-tuning the dosage according to the patient's metabolism, a key condition to reduce side effects. By using surface plasmon resonance and fluorescence spectroscopy we here show that short peptides designed in silico by a recently developed algorithm are capable of binding the anticancer drug irinotecan (CPT-11) with micromolar affinity. Importantly, the recognition takes place in the denaturating solution used in standard therapeutic drug monitoring to detach the drug from the proteins that are present in human plasma, and some of the peptides are capable of distinguishing CPT-11 from its metabolite SN-38. These results suggest that the in silico design of small artificial peptides is now a viable route for designing sensing units, opening a wide range of applications in diagnostic and clinical areas. •We have designed and synthesized cyclic peptides capable to bind irinotecan in methanol.•Micromolar affinity binders have been obtained.•The peptides are selective for irinotecan.