Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Terrestrial sources as the ...
    Them, T.R.; Jagoe, C.H.; Caruthers, A.H.; Gill, B.C.; Grasby, S.E.; Gröcke, D.R.; Yin, R.; Owens, J.D.

    Earth and planetary science letters, 02/2019, Volume: 507
    Journal Article

    This study evaluates the utility of sedimentary mercury (Hg) contents as a proxy for fingerprinting ancient massive volcanism, which is often associated with biogeochemical perturbations. Herein we present new Hg geochemical data from anoxic marine basins across the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) as a test of the complex Hg cycle. The T-OAE was likely initiated by the main eruptive phase of the Karoo–Ferrar large igneous province, which caused a subsequent cascade of environmental perturbations and resulting mass extinction. At present the leading interpretation of sedimentary Hg anomalies has been volcanogenic outgassing as the primary source. Our study and compilation results suggest, however, that Hg/TOC anomalies were restricted to shallow-water, and/or proximal environments, while deep-water, more distal depositional settings document no significant Hg-related anomalies. Furthermore, asynchronous stratigraphic deviations in Hg enrichments favor terrestrially sourced materials and local redox variability, rather than direct volcanogenic emissions, as a primary control mechanism. Additionally, Hg isotope signatures from our only study site documenting an Hg anomaly are also consistent with a terrestrial Hg origin during the T-OAE. Therefore, our results suggest that Hg anomalies in the geological record need to be re-evaluated as a “smoking gun” proxy that only infers volcanogenic inputs. •Mercury concentration and isotopes from anoxic basins across the Toarcian OAE.•Compilation shows mercury anomalies are observed near landmasses.•Compilation suggests that Hg is dominantly delivered via terrestrial sources.•Mercury isotopes from one section agree with terrestrial source delivering Hg.•Sedimentary Hg anomalies are not a direct proxy for past volcanism.