Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Sugar uptake by the solvent...
    Mitchell, Wilfrid J

    World Journal of Microbiology and Biotechnology, 02/2016, Volume: 32, Issue: 2
    Journal Article, Book Review

    The acetone–butanol–ethanol fermentation of solventogenic clostridia was operated as a successful, worldwide industrial process during the first half of the twentieth century, but went into decline for economic reasons. The recent resurgence in interest in the fermentation has been due principally to the recognised potential of butanol as a biofuel, and development of reliable molecular tools has encouraged realistic prospects of bacterial strains being engineered to optimise fermentation performance. In order to minimise costs, emphasis is being placed on waste feedstock streams containing a range of fermentable carbohydrates. It is therefore important to develop a detailed understanding of the mechanisms of carbohydrate uptake so that effective engineering strategies can be identified. This review surveys present knowledge of sugar uptake and its control in solventogenic clostridia. The major mechanism of sugar uptake is the PEP-dependent phosphotransferase system (PTS), which both transports and phosphorylates its sugar substrates and plays a central role in metabolic regulation. Clostridial genome sequences have indicated the presence of numerous phosphotransferase systems for uptake of hexose sugars, hexose derivatives and disaccharides. On the other hand, uptake of sugars such as pentoses occurs via non-PTS mechanisms. Progress in characterization of clostridial sugar transporters and manipulation of control mechanisms to optimise sugar fermentation is described.