Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • High-speed atomic force mic...
    Maity, Sourav; Trinco, Gianluca; Buzón, Pedro; Anshari, Zaid R; Kodera, Noriyuki; Ngo, Kien Xuan; Ando, Toshio; Slotboom, Dirk J; Roos, Wouter H

    Proceedings of the National Academy of Sciences - PNAS, 02/2022, Volume: 119, Issue: 6
    Journal Article

    The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter Glt Since CitS and Glt are structurally unrelated, we conclude that the three-state elevators have evolved independently.