Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Engineering of an automated...
    Lee, Jihui; van der Maaden, Koen; Gooris, Gerrit; O'Mahony, Conor; Jiskoot, Wim; Bouwstra, Joke

    International journal of pharmaceutics, 05/2021, Volume: 600
    Journal Article

    Display omitted Dissolving microneedle arrays (dMNAs) are promising devices for intradermal vaccine delivery. The aim of this study was to develop a reproducible fabrication method for dMNAs based on an automated nano-droplet dispensing system that minimizes antigen waste. First, a polymer formulation was selected to dispense sufficiently small droplets (<18 nL) that can enter the microneedle cavities (base diameter 330 µm). Besides, three linear stages were assembled to align the dispenser with the cavities, and a vacuum chamber was designed to fill the cavities with dispensed droplets without entrapped air. Lastly, the dispenser and stages were incorporated to build a fully automated system. To examine the function of dMNAs as a vaccine carrier, ovalbumin was loaded in dMNAs by dispensing a mixture of ovalbumin and polymer formulation, followed by determining the ovalbumin loading and release into the skin. The results demonstrate that functional dMNAs which can deliver antigen into the skin were successfully fabricated via the automatic fabrication system, and hardly any antigen waste was encountered. Compared to the method that centrifuges the mould, it resulted in a 98.5% volume reduction of antigen/polymer solution and a day shorter production time. This system has potential for scale-up of manufacturing to an industrial scale.