Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • The dependence of transient...
    Rose, Brian E. J.; Armour, Kyle C.; Battisti, David S.; Feldl, Nicole; Koll, Daniel D. B.

    Geophysical research letters, 16 February 2014, Volume: 41, Issue: 3
    Journal Article

    The effect of ocean heat uptake (OHU) on transient global warming is studied in a multimodel framework. Simple heat sinks are prescribed in shallow aquaplanet ocean mixed layers underlying atmospheric general circulation models independently and combined with CO2 forcing. Sinks are localized to either tropical or high latitudes, representing distinct modes of OHU found in coupled simulations. Tropical OHU produces modest cooling at all latitudes, offsetting only a fraction of CO2 warming. High‐latitude OHU produces three times more global mean cooling in a strongly polar‐amplified pattern. Global sensitivities in each scenario are set primarily by large differences in local shortwave cloud feedbacks, robust across models. Differences in atmospheric energy transport set the pattern of temperature change. Results imply that global and regional warming rates depend sensitively on regional ocean processes setting the OHU pattern, and that equilibrium climate sensitivity cannot be reliably estimated from transient observations. Key Points Climate response depends strongly on spatial pattern of ocean heat uptake Different radiative feedbacks govern transient and equilibrium CO2 warming Results are robust across an ensemble of aquaplanet climate models