Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Shaping triple-conducting s...
    Xia, Chen; Mi, Youquan; Wang, Baoyuan; Lin, Bin; Chen, Gang; Zhu, Bin

    Nature communications, 04/2019, Volume: 10, Issue: 1
    Journal Article

    Abstract Interest in low-temperature operation of solid oxide fuel cells is growing. Recent advances in perovskite phases have resulted in an efficient H + /O 2- /e - triple-conducting electrode BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for low-temperature fuel cells. Here, we further develop BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for electrolyte applications by taking advantage of its high ionic conduction while suppressing its electronic conduction through constructing a BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO p-n heterostructure. With this approach, it has been demonstrated that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ can be applied in a fuel cell with good electrolyte functionality, achieving attractive ionic conductivity and cell performance. Further investigation confirms the hybrid H + /O 2- conducting capability of BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO. An energy band alignment mechanism based on a p-n heterojunction is proposed to explain the suppression of electronic conductivity and promotion of ionic conductivity in the heterostructure. Our findings demonstrate that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ is not only a good electrode but also a highly promising electrolyte. The approach reveals insight for developing advanced low-temperature solid oxide fuel cell electrolytes.