Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Precision Oncology in Metas...
    Čerina, Dora; Matković, Višnja; Katić, Kristina; Lovasić, Ingrid Belac; Šeparović, Robert; Canjko, Ivana; Jakšić, Blanka; Fröbe, Ana; Pleština, Stjepko; Bajić, Žarko; Vrdoljak, Eduard

    Pathology oncology research, 09/2021, Volume: 27
    Journal Article

    Comprehensive genomic profiling (CGP) is gradually becoming an inevitable part of the everyday oncology clinical practice. The interpretation and optimal implementation of the results is one of the hot topics of modern-day oncology. According to the recent findings, uterine cancer harbors a high level of gene alterations but is still insufficiently explored. The primary goal of this project was to assess the proportion of patients with targetable mutations. Also, the aim was to define and emphasize potential opportunities as well as the problems we have faced in the first year of testing on the national level. We performed a multicentric, retrospective, nested cross-sectional analysis on the total population of Croatian patients with advanced/metastatic uterine cancer where the tumor CGP was performed during 2020. CGP of the tumor tissue of 32 patients revealed clinically relevant genomic alterations (CRGA) in 27 patients (84%) with a median of 3 (IQR 1-4) CRGA per patient. The most common CRGAs were those of phosphatide-inositol-3 kinases (PIK3) in 22 patients (69%), with 13/22 (59%) of those patients harboring PIK3CA mutation. The next most common CGRAs were ARID1A and PTEN mutations in 13 (41%) and 11 (34%) patients, respectively. Microsatellite status was determined as stable in 21 patients (66%) and highly unstable in 10 patients (31%). A high tumor mutational burden (≥10Muts/Mb) was reported in 12 patients (38%). CGP analysis reported some kind of targeted therapy for 28 patients (88%). CGP determined clinically relevant genomic alterations in the significant majority of patients with metastatic uterine cancer, defining it as a rich ground for further positioning and development of precision oncology.