Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
  • novel sodium glucose transp...
    Macdonald, F.R; Peel, J.E; Jones, H.B; Mayers, R.M; Westgate, L; Whaley, J.M; Poucher, S.M

    Diabetes, obesity & metabolism, November 2010, Volume: 12, Issue: 11
    Journal Article

    Aims: To investigate whether glucose lowering with the selective sodium glucose transporter 2 (SGLT2) inhibitor dapagliflozin would prevent or reduce the decline of pancreatic function and disruption of normal islet morphology. Methods: Female Zucker diabetic fatty (ZDF) rats, 7-8 weeks old, were placed on high-fat diet. Dapagliflozin (1 mg/kg/day, p.o.) was administered for ~33 days either from initiation of high-fat diet or when rats were moderately hyperglycaemic. Insulin sensitivity and pancreatic function were evaluated using a hyperglycaemic clamp in anaesthetized animals (n = 5-6); β-cell function was quantified using the disposition index (DI) to account for insulin resistance compensation. Pancreata from a matched subgroup (n = 7-8) were fixed and β-cell mass and islet morphology investigated using immunohistochemical methods. Results: Dapagliflozin, administered from initiation of high-fat feeding, reduced the development of hyperglycaemia; after 24 days, blood glucose was 8.6 ± 0.5 vs. 13.3 ± 1.3 mmol/l (p < 0.005 vs. vehicle) and glycated haemoglobin 3.6 ± 0.1 vs. 4.8 ± 0.26% (p < 0.003 vs. vehicle). Dapagliflozin improved insulin sensitivity index: 0.08 ± 0.01 vs. 0.02 ± 0.01 in obese controls (p < 0.03). DI was improved to the level of lean control rats (dapagliflozin 0.29 ± 0.04; obese control 0.15 ± 0.01; lean 0.28 ± 0.01). In dapagliflozin-treated rats, β-cell mass was less variable and significant improvement in islet morphology was observed compared to vehicle-treated rats, although there was no change in mean β-cell mass with dapagliflozin. Results were similar when dapagliflozin treatment was initiated when animals were already moderately hyperglycaemic. Conclusion: Sustained glucose lowering with dapagliflozin in this model of type 2 diabetes prevented the continued decline in functional adaptation of pancreatic β-cells.