Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Design, Optimization and Va...
    Ganesh, G.Dongre; Sarang, S.Chaitanya; Sai, M.Jonnalagadda

    Journal of physics. Conference series, 11/2021, Volume: 2070, Issue: 1
    Journal Article

    Abstract Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Conformal cooling is a proven technique for reduction in cycle times for injection molding. In this study, we have replaced a conventional cooling circuit with an optimized conformal cooling circuit in an injection molding tool (mold). The required heat transfer rate, coolant flow rate and diameter of channel was analytically calculated. Hybrid Laser powder bed fusion technique was used to manufacture this mold tool with conformal channels. The material used for manufacturing mold was maraging steel (M300). Thermal efficiency of the conformal channels was experimentally calculated using thermal imaging. Autodesk MoldFlow software was used to simulate and predict the cooling time required using conformal cooling channels. The results showed a decrease in cooling time and increase in cooling efficiency with the help of conformal cooling in additively manufactured mold insert.