Akademska digitalna zbirka SLovenije - logo
E-resources
Peer reviewed Open access
  • Synergistic aircraft and gr...
    Wu, Yonghua; Nehrir, Amin R.; Ren, Xinrong; Dickerson, Russell R.; Huang, Jianping; Stratton, Phillip R.; Gronoff, Guillaume; Kooi, Susan A.; Collins, James E.; Berkoff, Timothy A.; Lei, Liqiao; Gross, Barry; Moshary, Fred

    The Science of the total environment, 06/2021, Volume: 773
    Journal Article

    Air pollution associated with wildfire smoke transport during the summer can significantly affect ozone (O3) and particulate matter (PM) concentrations, even in heavily populated areas like New York City (NYC). Here, we use observations from aircraft, ground-based lidar, in-situ analyzers and satellite to study and assess wildfire smoke transport, vertical distribution, optical properties, and potential impact on air quality in the NYC urban and coastal areas during the summer 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We investigate an episode of dense smoke transported and mixed into the planetary boundary layer (PBL) on August 15–17, 2018. The horizontal advection of the smoke is shown to be characterized with the prevailing northwest winds in the PBL (velocity > 10 m/s) based on Doppler wind lidar measurements. The wildfire sources and smoke transport paths from the northwest US/Canada to northeast US are identified from the NOAA hazard mapping system (HMS) fires and smoke product and NOAA-HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory analysis. The smoke particles are distinguished from the urban aerosols by showing larger lidar-ratio (70-sr at 532-nm) and smaller depolarization ratio (0.02) at 1064-nm using the NASA High Altitude Lidar Observatory (HALO) airborne high-spectral resolution lidar (HSRL) measurements. The extinction-related angstrom exponents in the near-infrared (IR at 1020–1640 nm) and Ultraviolet (UV at 340–440 nm) from NASA-Aerosol Robotic Network (AERONET) product show a reverse variation trend along the smoke loadings, and their absolute differences indicate strong correlation with the smoke-Aerosol Optical Depth (AOD) (R > 0.94). We show that the aloft smoke plumes can contribute as much as 60–70% to the column AOD and that concurrent high-loadings of O3, carbon monoxide (CO), and black carbon (BC) were found in the elevated smoke layers from the University of Maryland (UMD) aircraft in-situ observations. Meanwhile, the surface PM2.5 (PM with diameter ≤ 2.5 μm), organic carbon (OC) and CO measurements show coincident and sharp increase (e.g., PM2.5 from 5 μg/m3 before the plume intrusion to ~30 μg/m3) with the onset of the plume intrusions into the PBL along with hourly O3 exceedances in the NYC region. We further evaluate the NOAA-National Air Quality Forecasting Capability (NAQFC) model PBL-height, PM2.5, and O3 with the observations and demonstrate good consistency near the ground during the convective PBL period, but significant bias at other times. The aloft smoke layers are sometimes missed by the model. Display omitted •Characterize the wildfire smoke optical properties and mixing into PBL•Distinguish smoke particles and their mixture from urban aerosols•Demonstrate concurrent high-loadings of O3, CO and BC in the elevated smoke layers•Quantify dramatic impacts of transported smoke on the air quality in NYC area•Assess the NOAA-NAQFC modeling PBLH, PM2.5 and O3