Akademska digitalna zbirka SLovenije - logo
E-resources
Full text
Peer reviewed
  • EBSD investigation of micro...
    Maurya, H.S.; Vikram, R.J.; Kumar, R.; Rahmani, R.; Juhani, K.; Sergejev, F.; Prashanth, K.G.

    Micron (Oxford, England : 1993), 05/2024, Volume: 180
    Journal Article

    Sustainable TiC-Fe-based cermets have been fabricated by adopting an Additive Manufacturing route based on laser powder bed fusion technology (L-PBF). The objective is to produce crack-free cermet components by employing novel multiple laser scanning techniques with variations in laser process parameters. Electron backscatter diffraction analysis (EBSD) was used to study the microstructure and microtexture evolution with variations in laser process parameters. The investigation revealed that adjusting the preheating scan speed (PHS) and melting scan speed (MS) influenced the growth and nucleation of TiC phases. Lowering these speeds resulted in grain coarsening, while higher scan speeds led to grain refinement with larger sub-grain boundaries. Moreover, a high scanning speed increases the degree of dislocation density and internal stress in the fabricated cermet parts. Notably, it is revealed that decreasing the laser scan speed enhanced the proportion of high-angle grain boundaries in the cermet components, signifying an increase in material ductility. •EBSD and SEM techniques were applied to investigate “green” TiC-based cermets.•Influence of multiple laser scan speed on cermets microstructure.•Significant grain refinement with increasing laser scan speed.•Lower laser scan speed decreases TiC bimodal morphology.•Subtle change in dislocation density as a function of laser scan speed.