Akademska digitalna zbirka SLovenije - logo
VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
  • Astroglial mechanisms of ketamine action include reduced mobility of Kir4.1-carrying vesicles
    Stenovec, Matjaž ...
    The finding that ketamine, an anaesthetic, can elicit a rapid antidepressant effect at low doses that lasts for weeks in patients with depression is arguably a major achievement in psychiatry in the ... last decades. However, the mechanisms of action are unclear. The glutamatergic hypothesis of ketamine action posits that ketamine is a N-methyl-d-aspartate receptor (NMDAR) antagonist modulating downstream cytoplasmic events in neurons. In addition to targeting NMDARs in synaptic transmission, ketamine may modulate the function of astroglia, key homeostasis-providing cells in the central nervous system, also playing a role in many neurologic diseases including depression, which affects to 20% of the population globally. We first review studies on astroglia revealing that (sub)anaesthetic doses of ketamine attenuate stimulus-evoked calcium signalling, a process of astroglial cytoplasmic excitability, regulating the exocytotic release of gliosignalling molecules. Then we address how ketamine alters the fusion pore activity of secretory vesicles, and how ketamine affects extracellular glutamate and K+ homeostasis, both considered pivotal in depression. Finally, we also provide evidence indicating reduced cytoplasmic mobility of astroglial vesicles carrying the inward rectifying potassium channel (Kir4.1), which may regulate the density of Kir4.1 at the plasma membrane. These results indicate that the astroglial capacity to control extracellular K+ concentration may be altered by ketamine and thus indirectly affect the action potential firing of neurons, as is the case in lateral habenula in a rat disease model of depression. Hence, ketamine-altered functions of astroglia extend beyond neuronal NMDAR antagonism and provide a basis for its antidepressant action through glia.
    Vir: Neurochemical research. - ISSN 0364-3190 (Vol. 45, iss. 1, 2020, str. 109-121)
    Vrsta gradiva - članek, sestavni del ; neleposlovje za odrasle
    Leto - 2020
    Jezik - angleški
    COBISS.SI-ID - 34206937

vir: Neurochemical research. - ISSN 0364-3190 (Vol. 45, iss. 1, 2020, str. 109-121)
loading ...
loading ...
loading ...