Akademska digitalna zbirka SLovenije - logo
VSE knjižnice (vzajemna bibliografsko-kataložna baza podatkov COBIB.SI)
  • Solution methods for failure analysis of massive structural elements : doctoral thesis = Méthodes de résolution des problèmes à rupture des éléments structures massives : mémoire de thèse de doctorat = Metode za porušno analizo masivnih konstrukcijskih elementov : doktorska disertacija
    Stanić, Andjelka
    The thesis studies: (i) the methods for failure analysis of solids and structures, and (ii) the embedded strong discontinuity finite elements for modelling material failures in quasi brittle 2d ... solids. As for the failure analysis, the consistently linearized path-following method with quadratic constraint equation is first presented and studied in detail. The derived path-following method can be applied in the nonlinear finite element analysis of solids and structures in order to compute a highly nonlinear solution path. However, when analysing the nonlinear problems with the localized material failures (i.e. material softening), standard path-following methods can fail. For this reason we derived new versions of the path-following method, with other constraint functions, more suited for problems that take into account localized material failures. One version is based on adaptive one-degree-of-freedom constraint equation, which proved to be relatively successful in analysing problems with the material softening that are modelled by the embedded-discontinuity finite elements. The other versions are based on controlling incremental plastic dissipation or plastic work in an inelastic structure. The dissipation due to crack opening and propagation, computed by e.g. embedded discontinuity finite elements, is taken into account. The advantages and disadvantages of the presented path-following methods with different constraint equations are discussed and illustrated on a set of numerical examples. As for the modelling material failures in quasi brittle 2d solids (e.g. concrete), several embedded strong discontinuity finite element formulations are derived and studied. The considered formulations are based either on: (a) classical displacement-based isoparametric quadrilateral finite element or (b) on quadrilateral finite element enhanced with incompatible displacements. In order to describe a crack formation and opening, the element kinematics is enhanced by four basic separation modes and related kinematic parameters. The interpolation functions that describe enhanced kinematics have a jump in displacements along the crack. Two possibilities were studied for deriving the operators in the local equilibrium equations that are responsible for relating the bulk stresses with the tractions in the crack. For the crack embedment, the major-principle-stress criterion was used, which is suitable for the quasi brittle materials. The normal and tangential cohesion tractions in the crack are described by two uncoupled, non-associative damage-softening constitutive relations. A new crack tracing algorithm is proposed for computation of crack propagation through the mesh. It allows for crack formation in several elements in a single solution increment. Results of a set of numerical examples are provided in order to assess the performance of derived embedded strong discontinuity quadrilateral finite element formulations, the crack tracing algorithm, and the solution methods.
    Vrsta gradiva - disertacija ; neleposlovje za odrasle
    Založništvo in izdelava - Ljubljana : [IA. Stanić], 2017
    Jezik - angleški
    COBISS.SI-ID - 8240993

    Povezava(-e):

    Repozitorij Univerze v Ljubljani – RUL
    Digitalna knjižnica Slovenije - dLib.si

    Dostop z namenskih računalnikov v prostorih NUK



Knjižnica/institucija Kraj Akronim Za izposojo Druga zaloga
Fakulteta za gradbeništvo in geodezijo, Ljubljana Ljubljana FGGLJ na dom 1 izv.
v čitalnico 1 izv.
loading ...
loading ...
loading ...