Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Garcia-Dorado, David; Ruiz-Meana, Marisol; Inserte, Javier; Rodriguez-Sinovas, Antonio; Piper, Hans Michael

    Cardiovascular research, 2012-May-01, 20120501, Letnik: 94, Številka: 2
    Journal Article

    Reperfusion may induce additional cell death in patients with acute myocardial infarction receiving primary angioplasty or thrombolysis. Altered intracellular Ca(2+) handling was initially considered an essential mechanism of reperfusion-induced cardiomyocyte death. However, more recent studies have demonstrated the importance of Ca(2+)-independent mechanisms that converge on mitochondrial permeability transition (MPT) and are shared by cardiomyocytes and other cell types. This article analyses the importance of Ca(2+)-dependent cell death in light of these new observations. Altered Ca(2+) handling includes increased cytosolic Ca(2+) levels, leading to activation of calpain-mediated proteolysis and sarcoplasmic reticulum-driven oscillations; this can induce hypercontracture, but also MPT due to the privileged Ca(2+) transfer between sarcoplasmic reticulum and mitochondria through cytosolic Ca(2+) microdomains. In the opposite direction, permeability transition can worsen altered Ca(2+) handling and favour hypercontracture. Ca(2+) appears to play an important role in cell death during the initial minutes of reperfusion, particularly after brief periods of ischaemia. Developing effective and safe treatments to prevent Ca(2+)-mediated cardiomyocyte death in patients with transient ischaemia, by targeting Ca(2+) influx, intracellular Ca(2+) handling, or Ca(2+)-induced cell death effectors, is an unmet challenge with important therapeutic implications and large potential clinical impact.