Akademska digitalna zbirka SLovenije - logo
E-viri
Preverite dostopnost
Recenzirano
  • 12-Acetoxyhawtriwaic Acid L...
    Melo, C.M; Maia, J.L; Cavalcante, I.J.M; Lima, M.A.S; Vieira, G.A.B; Silveira, E.R; Rao, V.S.N; Santos, F.A

    Planta medica, 06/2006, Letnik: 72, Številka: 7
    Journal Article

    The diterpene, 12-acetoxyhawtriwaic acid lactone (AHAL, tanabalin) isolated from the flower buds of Egletes viscosa Less. (Asteraceae) was evaluated on capsaicin-induced ear edema and hindpaw nociception in mice. AHAL (12.5, 25 and 50 mg/kg, P. O.) significantly attenuated the ear edema response to topically applied capsaicin (250 microg), in a dose-related manner. At similar doses, AHAL also suppressed the nocifensive paw-licking behavior induced by intraplantar injection of capsaicin (1.6 microg). These responses to capsaicin were also greatly inhibited by ruthenium red (3 mg/kg, S. C.), a non-competitive capsaicin receptor (TRPV1) antagonist. The anti-edema effect of AHAL (50 mg/kg) seems unrelated to either blockade of mast cell degranulation or to histamine and serotonin receptor antagonism since AHAL did not modify the paw edema response induced by intraplantar injections of compound 48/80, histamine or serotonin. However, the hindpaw edema induced by substance P and vascular permeability increase induced by intraperitoneal acetic acid were significantly suppressed by AHAL. The antinociceptive effect of AHAL (50 mg/kg) was unaffected by naloxone pretreatment but was significantly antagonized by theophylline and glibenclamide, the respective blockers of adenosine and K(ATP)-channels. AHAL (50 mg/kg, P. O.) did not impair the ambulation or motor coordination of mice in open-field and rota-rod tests. These data suggest that AHAL inhibits acute neurogenic inflammation possibly involving capsaicin-sensitive TRPV1-receptors, endogenous adenosine and ATP-sensitive potassium channels.