Akademska digitalna zbirka SLovenije - logo
E-viri
  • THE FMOS-COSMOS SURVEY OF S...
    Kashino, D.; Sugiyama, N.; Silverman, J. D.; Rodighiero, G.; Renzini, A.; Arimoto, N.; Daddi, E.; Lilly, S. J.; Carollo, C. M.; Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J.; Kartaltepe, J.; Nagao, T.; Capak, P.; Ilbert, O.; Kajisawa, M.; Koekemoer, A. M.

    Astrophysical journal. Letters, 11/2013, Letnik: 777, Številka: 1
    Journal Article

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.