Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Achieving large uniform ten...
    Dang, Chaoqun; Chou, Jyh-Pin; Dai, Bing; Chou, Chang-Ti; Yang, Yang; Fan, Rong; Lin, Weitong; Meng, Fanling; Hu, Alice; Zhu, Jiaqi; Han, Jiecai; Minor, Andrew M; Li, Ju; Lu, Yang

    Science (American Association for the Advancement of Science), 01/2021, Letnik: 371, Številka: 6524
    Journal Article

    Diamond is not only the hardest material in nature, but is also an extreme electronic material with an ultrawide bandgap, exceptional carrier mobilities, and thermal conductivity. Straining diamond can push such extreme figures of merit for device applications. We microfabricated single-crystalline diamond bridge structures with ~1 micrometer length by ~100 nanometer width and achieved sample-wide uniform elastic strains under uniaxial tensile loading along the 100, 101, and 111 directions at room temperature. We also demonstrated deep elastic straining of diamond microbridge arrays. The ultralarge, highly controllable elastic strains can fundamentally change the bulk band structures of diamond, including a substantial calculated bandgap reduction as much as ~2 electron volts. Our demonstration highlights the immense application potential of deep elastic strain engineering for photonics, electronics, and quantum information technologies.