Akademska digitalna zbirka SLovenije - logo
E-viri
  • A novel taxol-induced vimen...
    Vilalta, P M; Zhang, L; Hamm-Alvarez, S F

    Journal of cell science, 07/1998, Letnik: 111 ( Pt 13), Številka: 13
    Journal Article

    To understand how protein phosphorylation modulates cytoskeletal organization, we used immunofluorescence microscopy to examine the effects of okadaic acid, a serine/threonine protein phosphatase inhibitor, and taxol, a microtubule-stabilizing agent, on stable (acetylated and detyrosinated) microtubules, vimentin intermediate filaments and other cytoskeletal elements in CV-1 cells. Okadaic acid caused major changes in both stable microtubules and vimentin intermediate filaments, but through independent mechanisms. At 300 nM, okadaic acid caused apparent fragmentation and loss of stable microtubules which was not prevented by prior exposure to K252a. In contrast, major reorganization of vimentin intermediate filaments elicited at 750 nM okadaic acid was prevented by prior exposure to K252a. Taxol pretreatment blocked the effects of okadaic acid on stable microtubules and vimentin intermediate filaments. Recent reports have revealed that taxol can activate cellular signal transduction pathways in addition to its known ability to promote microtubule stabilization, so the possibility that taxol-induced resistance of vimentin intermediate filaments to okadaic acid was through a microtubule-independent mechanism involving direct phosphorylation of intermediate filament proteins was explored. Vimentin immunoprecipitation from cytoskeletal extracts from 32P-labeled cells revealed that taxol (4 microM, 1 or 2 hours) caused about a 2-fold increase in vimentin phosphorylation. This phosphorylation was recovered exclusively in cytoskeletal vimentin, in contrast to the increased phosphorylation of soluble and cytoskeletal vimentin caused by exposure to 750 nM okadaic acid. Phosphorylation of soluble and cytoskeletal vimentin from cells exposed to taxol (4 microM, 1 hour) then okadaic acid (750 nM, 1 hour) was comparable to taxol-treatment alone. These findings demonstrate a novel new activity of taxol, induction of vimentin phosphorylation, that may impact on vimentin organization and stability.