Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • MerTK Induces Dysfunctional...
    Zewdie, Eden Y.; Edwards, George M.; Hunter, Debra M.; Earp, Henry Shelton; Holtzhausen, Alisha

    Cancer immunology research, 07/2024
    Journal Article

    Abstract Checkpoint inhibitors, specifically anti–programmed cell death protein 1 (PD1), have shown success in treating metastatic melanoma; however, some patients develop resistance. Dendritic cells (DC) play a key role in initiating an immune response, but in certain circumstances they become ineffective. We investigated the role of MerTK, a receptor tyrosine kinase responsible for myeloid cell clearance of dead cells, in the regulation of DC function and metabolism in the tumor microenvironment. Tumors resistant to anti-PD1 exhibited increased levels of MerTK+ DCs. Treating wild-type DCs with apoptotic melanoma cells in vitro resulted in increased MerTK expression, elevated mitochondrial respiration and fatty acid oxidation, and reduced T-cell stimulatory capacity, all characteristics of dysfunctional DCs. In contrast, dead cells had only limited effect on the metabolism of MerTK-deficient DCs, which instead maintained an antigen-presenting, stimulatory phenotype. The efficacy of anti-PD1 to slow tumor progression and induce antigen specific T-cell infiltration was markedly increased in mice with selective ablation of MerTK in the DC compartment, suggesting the possibility of therapeutically targeting MerTK to modulate DC metabolism and function and enhance anti-PD1 therapy.