Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Rotor Position Estimation o...
    Wang, Gaolin; Kuang, Junyao; Zhao, Nannan; Zhang, Guoqiang; Xu, Dianguo

    IEEE transactions on power electronics, 09/2018, Letnik: 33, Številka: 9
    Journal Article

    High-frequency signal injection methods have been widely used in sensorless control of permanent-magnet synchronous motor (PMSM) drives. However, the acoustic noise and torque ripples caused by the injected high-frequency signal limit the application of the methods. To avoid these drawbacks, this paper proposes a position estimation method that combines derivative calculations of current and zero-voltage-vector (ZVV) injection, which is especially effective for zero- and low-speed operation of sensorless PMSM drives. This investigation mainly focuses on the extraction of rotor position from ZVV period and the improvements of the accuracy of estimated position. The PMSM equation is developed in the stationary frame when ZVV is applied. The proposed d-axis current allocation scheme ensures the application of the proposed method from no load to rated load. A modified space vector pulse width modulation (SVPWM) control strategy and a ZVV extension scheme are employed to improve the accuracy of estimated position, which also makes the method more realizable. Further, a novel current sampling method that selects two suitable phase currents for derivative calculation according to the voltage sector location is proposed, which can help reduce current derivative ripples and decrease position estimation errors. Finally, the effectiveness of the proposed position estimation strategy is verified on a 1.0-kW interior PMSM (IPMSM) drive platform.