Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Odprti dostop
  • Caserta, A; Kanivetsky, R; Salusti, E

    arXiv.org, 08/2016
    Paper, Journal Article

    In this paper we propose the application of a new model of transients of pore pressure p and solute density \r{ho} in geologic porous media. This model is rooted in the non-linear waves theory, the focus of which is advection and effect of large pressure jumps on strain (due to large p in a non-linear version of the Hooke law). It strictly relates p and \r{ho} evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e. the non-linear Burgers solitons. We therefore propose that the actual transport process in porous rocks for large signals is not the linear diffusion, but could be governed by solitons. A test of an eventual presence of solitons in a rock is here proposed, and then applied to Pierre Shale, Bearpaw Shale, Boom Clay and Oznam-Mugu silt and clay. A quick analysis showing the presence of solitons for nuclear waste disposal and salty water intrusions is also analyzed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in Jordan and St. Peter sandstones, thus suggesting the occurrence of osmosis in these rocks.