Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Influence of Molecular Orie...
    Lin, Hsiao-Chu; MacDonald, Gordon A; Shi, Yanrong; Polaske, Nathan W; McGrath, Dominic V; Marder, Seth R; Armstrong, Neal R; Ratcliff, Erin L; Saavedra, S. Scott

    Journal of physical chemistry. C, 05/2015, Letnik: 119, Številka: 19
    Journal Article

    The effect of the molecular orientation distribution of the first monolayer of donor molecules at the hole-harvesting contact in an organic photovoltaic (OPV) on device efficiency was investigated. Two zinc phthalocyanine (ZnPc) phosphonic acids (PA) deposited on indium tin oxide (ITO) electrodes are compared: ZnPc­(PA)4 contains PA linkers in all four quadrants, and ZnPcPA contains a PA linker in one quadrant. ZnPcPA monolayers exhibited a broad distribution of molecular orientations whereas ZnPc­(PA)4 adsorption produced a monolayer with a narrower orientation distribution with the molecular plane more parallel to the ITO surface. We used potential-modulated attenuated total reflectance spectroelectrochemistry (PM-ATR) to characterize the charge-transfer kinetics of these films and show that the highest rate constants correspond to ZnPc subpopulations that are oriented more parallel to the ITO surface plane. For ZnPc­(PA)4, rate constants exceeded 104 s–1 and are among the highest ever reported for a surface-confined redox couple, which is attributable to both its orientation and the small ZnPc–electrode separation distance. The performance of OPVs with ITO hole-harvesting contacts modified with ZnPc­(PA)4 was comparable to that achieved with highly activated bare ITO contacts, whereas for ZnPcPA-modified contacts, the OPV performance was similar to that observed with (hole-blocking) alkyl-PA modifiers. These results demonstrate the synergism between molecular structure, energetics, and dynamics at interfaces in OPVs.