Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • A Trimeric Lipoprotein Assi...
    Grin, Iwan; Hartmann, Marcus D.; Sauer, Guido; Hernandez Alvarez, Birte; Schütz, Monika; Wagner, Samuel; Madlung, Johannes; Macek, Boris; Felipe-Lopez, Alfonso; Hensel, Michael; Lupas, Andrei; Linke, Dirk

    The Journal of biological chemistry, 03/2014, Letnik: 289, Številka: 11
    Journal Article

    Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of β-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins. Background: Autotransporter adhesins reach the bacterial cell surface by a complex mechanism. Results: In the case of the autotransporter SadA from Salmonella, a lipoprotein assists in surface display. Conclusion: The similarity to eukaryotic MATH domains suggests that the lipoprotein assists in trimerization of SadA. Significance: Understanding the similarities between autotransport systems might lead to new ways of inhibiting bacterial adhesion.