Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Quantitative SERS Detection...
    Zhang, Kun; Liu, Yu; Wang, Yuning; Zhang, Ren; Liu, Jiangang; Wei, Jia; Qian, Hufei; Qian, Kun; Chen, Ruoping; Liu, Baohong

    ACS applied materials & interfaces, 05/2018, Letnik: 10, Številka: 18
    Journal Article

    Reliable profiling of the extracellular dopamine (DA) concentration in the central nervous system is essential for a deep understanding of its biological and pathological functions. However, quantitative determination of this neurotransmitter remains a challenge because of the extremely low concentration of DA in the cerebrospinal fluid (CSF) of patients. Herein, on the basis of the specific recognition of boronate toward diol and N-hydroxysuccinimide ester toward the amine group, a simple and highly sensitive strategy was presented for DA detection by using surface-enhanced Raman scattering (SERS) spectroscopy as a signal readout. This was realized by first immobilizing 3,3′-dithiodipropionic acid di­(N-hydroxysuccinimide ester) on gold thin film surfaces to capture DA, followed by introducing 3-mercaptophenylboronic acid (3-MPBA)-functionalized silver nanoparticles to generate numerous plasmonic “hot spots” with the nanoparticle-on-mirror geometry. Such a dual-recognition mechanism not only avoids complicated bioelement-based manipulations but also efficiently decreases the background signal. With the direct use of the recognition probe 3-MPBA as a Raman reporter, the “signal-on” SERS method was employed to quantify the concentration of DA from 1 pM to 1 μM with a detection limit of 0.3 pM. Moreover, our dual-recognition-directed SERS assay exhibited a high resistance to cerebral interference and was successfully applied to monitoring of DA in CSF samples of patients.