Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Electronic and optical char...
    Kojima, Kazunobu; Tsukada, Yusuke; Furukawa, Erika; Saito, Makoto; Mikawa, Yutaka; Kubo, Shuichi; Ikeda, Hirotaka; Fujito, Kenji; Uedono, Akira; Chichibu, Shigefusa F.

    Japanese Journal of Applied Physics, 05/2016, Letnik: 55, Številka: 5S
    Journal Article

    Fundamental electronic and optical properties of a low-resistivity m-plane GaN single crystal, which was grown by hydride vapor phase epitaxy on a bulk GaN seed crystal synthesized by the ammonothermal method in supercritical ammonia using an acidic mineralizer, were investigated. The threading dislocation and basal-plane staking-fault densities of the crystal were around 104 cm−2 and less than 100 cm−1, respectively. Oxygen doping achieved a high electron concentration of 4 × 1018 cm−3 at room temperature. Accordingly, a photoluminescence (PL) band originating from the recombination of hot carriers was observed at low temperatures, even under weak excitation conditions. The simultaneous realization of low-level incorporation of Ga vacancies (VGa) less than 1016 cm−3 was confirmed by using the positron annihilation technique. Consistent with our long-standing claim that VGa complexes are the major nonradiative recombination centers in GaN, the fast-component PL lifetime of the near-band-edge emission at room temperature longer than 2 ns was achieved.